Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape.

نویسندگان

  • Joshua N Leonard
  • David V Schaffer
چکیده

Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

siVirus: web-based antiviral siRNA design software for highly divergent viral sequences

siVirus (http://siVirus.RNAi.jp/) is a web-based online software system that provides efficient short interfering RNA (siRNA) design for antiviral RNA interference (RNAi). siVirus searches for functional, off-target minimized siRNAs targeting highly conserved regions of divergent viral sequences. These siRNAs are expected to resist viral mutational escape, since their highly conserved targets l...

متن کامل

Human immunodeficiency virus type 1 escape from RNA interference.

Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transa...

متن کامل

Therapeutic potential of Paclitaxel against COVID-19

The coronavirus disease-2019(COVID-19) was reported in Wuhan, China, in late December 2019 and soon became the most serious global health challenge due to high rate of human-to-human transmission. The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), is a single-stranded RNA virus and belongs to the large Coronaviridae family. Paclitaxel, an antineoplastic drug extracted from the Tax...

متن کامل

Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches.

Short interfering RNAs (siRNAs) directed against poliovirus and other viruses effectively inhibit viral replication. Although RNA interference (RNAi) may provide the basis for specific antiviral therapies, the limitations of RNAi antiviral strategies are ill defined. Here, we show that poliovirus readily escapes highly effective siRNAs through unique point mutations within the targeted regions....

متن کامل

Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron

RNA interference (RNAi) is a powerful approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication. However, HIV-1 can escape from RNAi-mediated antiviral therapy by selection of mutations in the targeted sequence. To prevent viral escape, multiple small interfering RNAs (siRNAs) against conserved viral sequences should be combined. Ideally, these RNA inhibitors should be express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 2005